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Abstract 

A broad scope of crop models with varying demands on data inputs is being used for several purposes, such as pos-
sible adaptation strategies to control climate change impacts on future crop production, management decisions, and 
adaptation policies. A constant challenge to crop model simulation, especially for future crop performance projec-
tions and impact studies under varied conditions, is the unavailability of reliable historical data for model calibrations. 
In some cases, available input data may not be in the quantity and quality needed to drive most crop models. Even 
when a suitable choice of a crop simulation model is selected, data limitations hamper some of the models’ effective 
role for projections. To date, no review has looked at factors inhibiting the effective use of crop simulation models and 
complementary sources for input data in South Africa. This review looked at the barriers to crop simulation, relevant 
sources from which input data for crop models can be sourced, and proposed a framework for collecting input data. 
Results showed that barriers to effective simulations exist because, in most instances, the input data, like climate, soil, 
farm management practices, and cultivar characteristics, were generally incomplete, poor in quality, and not easily 
accessible or usable. We advocate a hybrid approach for obtaining input data for model calibration and validation. 
Recommended methods depending on the intended outputs and end use of model results include remote sensing, 
field, and greenhouse experiments, secondary data, engaging with farmers to model actual on-farm conditions. Thus, 
employing more than one method of data collection for input data for models can reduce the challenges faced by 
crop modellers due to the unavailability of data. The future of modelling depends on the goodness and availability of 
the input data, the readiness of modellers to cooperate on modularity and standardization, and potential user groups’ 
ability to communicate.
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Introduction
According to the United Nations (U.N) (2019) projec-
tions, the population of South Africa is expected to 
grow to about 68 million by the year 2035 and 75 mil-
lion by 2050. The South African population has increased 

between 2002 and 2017 and the estimated overall growth 
rate increased from around 1.17% between 2002 and 
2003 to 1.61% for the period 2016 to 2017 [171] and 
1.28% between 2019 and 2020 [180]. The import for this 
increase is that food production in South Africa will have 
to be increased by such measures to be able to meet and 
sustain the demands of the rapidly growing population. 
Based on this scenario, the question which arises is how 
is South Africa going to solve the issues of meeting the 
increase in the demand for agricultural products given 
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that the country is already facing challenges due to the 
increased pressures on land use, water scarcity, and 
other natural resources? To complicate matters further, 
they have to solve this by depending on the same natural 
resources in the country [49]. Similarly, climate change 
has been cited to be a key concern within South Africa 
due to the significant threat it poses to South Africa’s 
water resources, food security, ecosystem services, and 
biodiversity [196]. Due to global emissions of greenhouse 
gases (IPCC, 2013), climate change affects areas world-
wide, with places, like South Africa, experiencing tem-
perature increases and decreasing rainfall patterns [24, 
111]. The average annual temperatures over South Africa 
has increased by at least 1.5 times above the observed 
global average of 0. 65 °C over the past five decades and 
extreme rainfall events have increased in frequency [196] 
with the projected likelihood of continuance. According 
to the Fifth Assessment Report of the Intergovernmental 
Panel on Climate Change (IPCC AR5) for Representa-
tive Concentration Pathway (RCP) under RCP 4.5, the 
near-surface mean temperature is indicated at 1–1. 5 °C 
on the coast and around 3  °C inland for South Africa 
for the period 2081–2100 as opposed to the reference 
period 1986–2005. RCP 8.5 suggests warming relative 
to 1986–2005 of 3–6 °C by 2081–2100 in the interior of 
South Africa with less certainty with regard to precipita-
tion changes in terms of both direction and magnitude. 
The long-term adaptation scenario flagship research pro-
gramme (LTAS) (Department of Environmental Affairs 
(DEA)(2013) describes South Africa’s future climate up to 
2050 and beyond using four fundamental climate scenar-
ios with different degrees of change and likelihood that 
capture the impacts of global mitigation over time. These 
scenarios include a warmer (3 °C above 1961–2000) and 
wetter with substantially greater frequency of extreme 
rainfall events; a warmer (< 3  °C above 1961–2000) 
and drier, with an increase in the frequency of drought 
events and somewhat greater frequency of extreme rain-
fall events; hotter (> 3  °C above 1961–2000) and wetter, 
with substantially greater frequency of extreme rainfall 
events; and hotter (> 3  °C above 1961–2000) and drier, 
with a substantial increase in the frequency of drought 
events and greater frequency of extreme rainfall events. 
A higher frequency of flooding and drought extremes 
is projected in both wetter and drier futures, with the 
range of extremes worsened significantly under uncon-
strained emissions scenarios (DEA 2013). This will have 
a negative impact on food production and the produc-
tivity of croplands [24] and South Africa’s food produc-
tion and sustainability of food production systems will 
be seriously threatened. Therefore, understanding and 
predicting crop production outcomes under various cli-
mate scenarios and farm management practices geared 

towards adaptation and sustainability is of the essence. 
This, therefore, presents a scenario where the informa-
tion needed for agricultural decision-making at all lev-
els from farm management to adaptation strategies and 
relief schemes are also increasing and a method of sup-
plying such information in relatively shorter time frames 
is needed.

Traditional agronomic research, such as field experi-
ments, has been and is being used as reliable informa-
tion sources for establishing causal relationships between 
agricultural land management patterns and real-world, 
observed measurements [50, 99]. However, such tradi-
tional agronomic research methods are becoming insuf-
ficient to meet the rate of increasing needs and demands 
for data to guide policies and decision-making processes. 
Furthermore, traditional agronomic experiments often 
present only results from trials conducted at points in 
time and place, thereby creating season-specific as well 
as site-specific results [132]. Besides, these trials are usu-
ally labour intensive, time consuming, and expensive [34] 
and cause delays in the period of information acquisition. 
Again, it is hardly possible to run trials for several years 
and on multiple sites on the season- and site-specific rec-
ommendations for a wide range of parameters [74].

Furthermore, these trails may not provide sufficient 
data in space and time to identify appropriate and effec-
tive management practices [81, 84]. Due to these short-
comings of traditional field experiments, there is an 
urgent need for a tool/method where new data and 
research findings are quickly and easily obtained and 
results are made rapidly available to end-users in vari-
ous sectors dependent on such data and results for 
decision-making. By fast-tracking these plant–environ-
ment processes, intended results and outcomes will 
quickly become available, minimizing the constraints 
on only farm experiments for data. Hence, the need for 
the development and efficient use of tools such as crop 
simulation models to project food crop cultivation under 
various scenarios and time scales. It must be emphasized 
here that the usage of crop models cannot replace field 
trials. On the contrary, there is a growing awareness, 
especially in the crop modelling community, that good 
field trials, even though scarce, are crucial to improve 
and test these crop models [156]. With this in mind, we 
look at how crop models fill in the gap for traditional field 
experiments.

Crop simulation modelling offers an opportunity for 
exploring cultivar potential for new areas before estab-
lishing expensive and time-consuming field experiments 
[12]. Lengthy and costly agronomic and modelling field 
trials with a high number of treatments could be pre-
evaluated by conducting, in minutes, experiments on 
a desktop computer or laptop [172]. Crop models have 
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been shown to be vital tools in decision-making, in 
assessing the impacts of climate change/variability and 
management practices on productivity and environmen-
tal performance of alternative cropping systems, to pro-
mote better and sustainable agriculture [4, 88, 190]. They 
are a quicker and less expensive alternative for investigat-
ing the effects of agricultural land management practices 
on crop yields and the environment [34] and showing the 
optimum level of management for attaining economically 
efficient yields [191]. Crop simulation models can be used 
as decision support systems to assess the risk and eco-
nomic impacts of management strategies in agriculture. 
According to Zhao [195], the modelling approach can 
provide reasonably reliable results in developing agricul-
tural land management strategies if the models are cali-
brated and validated using reliable observed field data. 
For example, crop models have been applied to refine 
management practices, such as fertilizer application and 
water usage at the farm and plot scales [92], and to test 
the effectiveness of alternative agricultural land manage-
ment practices under varying climate change scenarios 
[34]. The modelling of crops is critical to developing, 
implementing, and maintaining food security and policy 
in South Africa. Given that within each model they are 
modules built for specific crops, they can assimilate the 
understanding of specific crop physiology collected from 
many years of laboratory and field experiments and pro-
vide an effective means for investigating crop responses 
to climate change and alternative management scenarios 
[7] they are essential for projections.

Even though there are variations in the figures relat-
ing to the effects of climate change on crops, the nega-
tive impacts projected are expected to affect the basic 
food basket—wheat, rice, maize, and grain legumes as 
well as significant cash crops (e.g. sugarcane, coffee, and 
cocoa)—at moderate or low (≤+3  °C) levels of warm-
ing [141] if no adaptation actions are taken [29, 135, 
136]. Evidence from regional and local studies and global 
meta-analyses of modelling studies indicates that adapta-
tion strategies are critical in countering any adverse or 
capitalizing positive effects that may arise due to climate 
change [29, 35]. Adaptation strategies are probably the 
only means by which food availability and stability can 
be maintained or increased to meet future food security 
needs. Recent model-based global estimates show that 
even incremental adaptation strategies could result in 
mean yield increases of ~ 7% at any level of warming [29, 
135, 136]. This suggests that substantial opportunities 
may exist if more significant (i.e. systemic and transfor-
mational) changes in cropping systems are implemented 
[141] through simulation with crop models.

In areas, such as South Africa, with unfavourable 
growth conditions in arid and semi-arid regions, water 
is a limiting factor coupled with low soil fertility or poor 
agronomic practices, the crop growth model’s use is still 
a challenge [198]. A point shared by Gaiser et al. [62], cit-
ing such challenges, will be felt in tropical Africa or Latin 
America. This limitation can be because of inadequate 
input data. Data needed for crop model calibration and 
simulation include climatic data, such as precipitation, 
maximum and minimum, temperature, solar radiation, 
and relative humidity. Also, soil data on soil physical 
and chemical properties (bulk density, cation exchange 
capacity, texture, and electrical conductivity), location 
(site, altitude, weather station, latitude, and longitude), 
crop management practices (cultivar genetic coefficients, 
irrigation, fertilizer type and amounts, row spacing, 
planting date, planting depth, plant population, tillage 
operations and dates, weed control, and leaf area index 
(LAI)) are also needed. Sometimes at experimental sta-
tions, crop experiments are rarely performed for crop 
model set-up and use, and input data might not be in the 
desired model format.

Furthermore, Motha [122] stated that it is common to 
have sufficient data collected on aboveground biomass in 
cropping systems but inadequate data on soil characteri-
zation and root growth. Also, faulty instruments, insuffi-
cient data entries in logbooks, and the absence of climate 
stations in some areas (e.g. [33]) could influence data 
quality and availability. Therefore, input data, such as cli-
mate records, soil physical and chemical properties, soil 
characteristics, crops, cultivars types, agronomic, and 
management practices, are often not continuous in time, 
scale wise, or crop model format. These challenges only 
increase when the study is upscaled beyond the experi-
mental field to the district, regional, or provincial scales. 
In order to overcome this challenge and yield meaning-
ful results, Folberth et al. [60] suggested it is essential to 
calibrate crop growth parameters to local conditions or 
use parameters from local field studies when applying 
large-scale crop growth models specifically for low yield 
regions, such as South Africa before their application. 
Therefore, models can only help identify management 
options for maximizing sustainability goals to land man-
agers and policymakers across space and time as long as 
the needed soil, management, climate, and data are avail-
able [81, 84].

The very nature of both climate change and the agrar-
ian system is complex [58]. This, therefore, means that 
insufficiencies in input data in a given area pose a signifi-
cant challenge to the accuracy and reliability of the mod-
els’ outputs. The needs of models, such as DSSAT and 
APSIM, which are very robust tools for crop production 
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projections, need complete climatic and phenological 
data for them to be effective.

In South Africa, however, there is the challenge that 
the trials carried out are more focused on attainable 
yields and less attention paid to other data that are vital 
to these models. Hence, there is that shortage of informa-
tion, especially regarding planting dates, dates of emer-
gence, flowering, maturity and biomass, and grain yields. 
Most of the data always found reports on a percentage to 
the milestone in the crop phenological state. Such data 
cannot be fed into any model because it does meet the 
required format for input data. It will then require the 
modeller to use assumptions that can be biased. There is 
a need to integrate methods by which such assumptions 
can be based with minimal room for error.

Using crop simulation models to assess agronomic 
practices and yield changes under varying climates and 
management regimes is of specific importance to farm-
ers, most especially those in the dry land systems (sum-
mer rainfall areas) of South Africa. These farmers in the 
summer rainfall areas have been cited as vulnerable to 
climate change impacts since they usually operate under 
suboptimal conditions (e.g. [111]). More reliable esti-
mations of season-to-season variation, as well as future 
climate change in areas, such as the summer rainfall 
regions, which are dependent on rain-fed agriculture, are 
therefore essential.

Effortlessly carrying out simulations on different agri-
culture and food systems means, if possible, there will 
be all needed input data sets to conduct studies that 
evaluate outcomes and tradeoffs among alternative farm 
management practices, technologies, policies, or climate 
scenarios. This scenario does not exist in South Africa. 
But where are we currently compared to this ideal situ-
ation? There is a shortage of information on the barrier 
to crop simulation modelling in South Africa due to data 
limitation or alternative sources of obtaining input data 
for models. Understanding the barriers to using crop 
models in South Africa vis-à-vis, the availability of input 
data can be a panacea to developing an integrated strat-
egy that could enhance crop model use for agricultural 
production adaptation strategies. Furthermore as stated 
by Jones et  al. [81, 84], generally, sufficient data on the 
biophysical, environmental, and socio-economic condi-
tions of each farm or for a range of farm typologies in 
this regions are not available. Although some data, such 
as climate and soil data, are available, generally these are 
not organized nor are they sufficiently site specific that 
agricultural systems models can readily access them for 
analysis of specific farms [81, 84]. Although research has 
shown that some analyses needed to advise a farmer can 
be made, the availability of input data for agricultural sys-
tems models remains a major limitation [81, 84].

A potential pitfall in using the crop model is that users 
may not familiarize themselves with the model’s intended 
use and limitations before using it and may well be una-
ware of the uncertainty associated with results that they 
incorporate into decision-making processes [188]. While 
studies have explored the strengths and weaknesses of 
these models [41, 145, 165]; Willcock et  al. 2016), the 
number of studies seeking to recommend, explore, and 
validate sources for input data remains limited (e.g. [108, 
160]). Such studies are vital in providing user communi-
ties with the information required to choose the most 
appropriate tools for their particular situation, use them 
correctly, and understand associated uncertainties (Will-
cock et al. 2016). They can also provide valuable informa-
tion on potential data sources for parameterizing models 
and focus data acquisition by revealing which parameters 
have the most influence on model accuracy [144]. Stud-
ies, such as that of Hoffmann et  al. [74] and Mathobo 
et  al. [115], have carried out studies in South Africa 
using crop models but did not highlight the challenges 
of running CSM due to unavailable input data as well as 
the opportunities for using other sources of input data 
thereof. Chisanga et  al. [33], on their part, highlighted 
challenges due to unavailable data from experiments. 
Regarding unavailable climate data, they cited Motha’s 
[122] recommendations on how to get climate data from 
weather generators.

The purpose of this paper is to address the question of 
where South Africa is in terms of data availability for crop 
modelling by identifying the challenges and opportuni-
ties involved in using crop simulation models in South 
Africa with input data requirements. We aim to provide a 
robust approach to obtaining input data for crop models 
in the face of limited data to simulate effortlessly various 
phenomena and estimate the potential implications of 
climate change for South African crops. Furthermore, the 
study aims for data acquired through the proposed meth-
odology to meet the standard for minimum input data 
for models. Hence, input data obtained should be at the 
appropriate spatial scale, are relevant to the cropping sys-
tem being explored, are agronomically suitable, and apt 
for the proper calibration of the intended crop models to 
be used. As a critical first step towards providing an inte-
grated approach to obtaining input data for crop models, 
we propose various types of crop simulation models and 
the risk of their use (“Components of crop simulation 
models” section); minimum data requirements for run-
ning crop models (“Model calibration - minimum data 
requirements versus a full set of data” section); and the 
challenges involved in running of crop models in South 
Africa (“Challenges in using crop simulation models 
in South Africa” section). By combining our empirical 
knowledge of data acquisition sources with the identified 
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gaps in model applications, we propose a conceptual 
model of possible sources for input data acquisition for 
crop models (“Towards an integrated method in obtain-
ing suitable input data for a crop simulation model” 
section) and show how they can be incorporated. We 
conclude with a recommendation for a forward-looking 
assessment of how various data sources can be better 
used to improve crop simulation. The key methods iden-
tified in our review are presented in Fig. 1.

Literature review process
This research follows a critical review process. According 
to Grant and Booth [66], a critical review aims to demon-
strate that the writer has extensively researched the lit-
erature and critically evaluated its quality. It goes beyond 
a mere description of identified articles and includes a 
degree of analysis and conceptual innovation typically 
manifest in a hypothesis or a model. The resultant model 
may constitute an interpretation of the existing data. A 
critical review provides an opportunity to ‘take stock’ and 
evaluate what is of value from the previous body of work. 
As such, it may provide a ‘launch pad’ for a new phase 
of conceptual development and subsequent ‘testing’ [66]. 
However, critical reviews do not typically demonstrate 
the systematicity of other more structured approaches to 
the literature. While there is considerable value in identi-
fying all the available literature on a topic under review, 
there is no formal requirement to present the search, 
synthesis, and analysis methods explicitly [66]. The 
emphasis is on the conceptual contribution of each item 

of included literature, not on formal quality assessment. 
Such a review does serve to aggregate the literature on a 
topic and the resulting product is the starting point for 
further evaluation [66].

The review process was carried out through four 
phases: the design, conducting, data abstraction and 
analysis, and structuring and writing of the review 
(Fig.  1). The process started with a search in various 
databases following keywords and phrases. Criteria were 
set as follows: the articles should be written in English, 
published by January 2012, and should have input data 
sources, challenges in simulating, validation, and simula-
tion results from the crop model simulations conducted, 
especially in South Africa. The aim of the review guided 
the inclusion criteria. The results from various searches 
were sorted by relevance after scanning article abstracts. 
Data abstracted was in the form of descriptive informa-
tion, such as authors, years published, topic, or type of 
study, or in the form of effects and findings. Validity and 
reliability were ensured through the checklist given in 
Table 1. A total of 108 studies had material that was con-
sidered suitable for this review.

Components of crop simulation models
Crop models are essentially collections of mathematical 
equations that represent the various processes occurring 
within the plant and the interactions between the plant 
and its environment [161] and have become an indis-
pensable tool for estimating future impacts of climate 
change on crop yield [59]. Crop simulation models  use 

Fig. 1 Steps in the review process
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quantitative descriptions (as model input data) of eco-
physiological processes to predict plant growth and 
development in relation to factors influencing the pro-
duction, such as environmental conditions and crop 
management practices [73]. Crop models are generally 
designed around four key components (Fig. 2).

To run a crop model and to conduct a simulation, a 
set of input data is required, sometimes referred to as 
a ‘Minimum Data Set’ [78]. These data are needed for 
model evaluation, model application, and sometimes for 
model development and improvement. Such required 
data include site specific weather data for the dura-
tion of the growing season (preferably for the complete 
year); soil surface characteristics and soil profile data; 
crop management information from the experiment 
that was conducted for model calibration (including at a 
minimum two key phenological phases, i.e. flowering or 
anthesis and physiological or harvest maturity, yield, and 
yield components) are needed as observational data [77, 
78]. This is similar to what Craufurd et al. [38] proposed 
that data should include data on plant development, car-
bon capture, water capture, and nitrogen and phosphorus 

capture. This is because plant development or phenology 
determines the timing and duration of key developmental 
events, notably flowering (anthesis). As such, it provides 
the framework within which processes of carbon, water, 
and nutrient capture and use occur. Minimum required 
weather data include: Latitude and longitude of the 
weather station; Daily values of incoming solar radiation 
(MJ/m2-day); Maximum and minimum daily air tempera-
ture (°C), and Daily total rainfall (mm). Also, the dry and 
wet bulb temperatures and wind speed, which allows for 
simulating evapotranspiration with more robust meth-
ods, can be added [77, 78]. The length of weather records 
for evaluation must, at minimum, cover the duration of 
the experiment and should preferably begin a few weeks 
before planting and continue a few weeks after harvest 
so that  ‘what-if ’ type of analyses can be performed [77, 
78]. Soil data include upper and lower horizon depths 
(cm), percentage sand, silt, clay content, bulk density, 
organic carbon, pH in water, aluminum saturation, and 
root abundance information [77, 78]. Management data 
include planting dates and dates when soil conditions 
were measured  before planting, planting density, row 

Table 1 Guidelines in assessing the validity and reliability of the literature review ( Adapted from Snyder [169])

Action Validation

Phase 1: Design

 In relationship to the overall research field of crop simulation and data requirement, is this literature review needed and does it make a 
substantial, practical, or theoretical contribution?

√

 Are the motivation, the purpose, and the research question(s) for reviewing the challenges and opportunities in crop modelling clearly 
stated and motivated?

√

 Does the review account for the previous literature review and other relevant literature? √

 Is the approach/methodology for the literature review clearly stated? √

 Is this the most appropriate approach to address the research problem? √

 Are the search strategy clearly and transparently described and motivated (including search terms, databases used, and explicit inclusion 
and exclusion criteria)?

√

Phase 2: Conduct

 Is the search process appropriate for this type of review? √

 Have proper measures been taken to ensure research quality? √

 Can it be trusted that the final sample is appropriate and in concordance with the review’s overall purpose? √

Phase 3: Data abstraction and analysis

 Is the data abstracted from the article appropriate in concordance with the overall purpose of the review? √

 Is the process for abstracting data accurately described? √

 Have proper measures been taken to ensure quality data abstraction?

 Is the chosen data analysis technique appropriate with the overall research question and the data abstracted? √

 Is the analysis process properly described and transparent? √

Phase 4: Structuring and writing the review

 Is the review article organized coherently in relation to the overall approach and research question? √

 Can the overall method of conducting the literature review be replicated? √

 Is the result of the review reported appropriately and clearly? √

 Does the article synthesize the literature review findings into a clear and valuable contribution to the topic? √

 Are questions or directions for further research included? Are the results from the review useable? √
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spacing, planting depth, crop variety, irrigation, and fer-
tilizer  practices. These data are needed for both model 
evaluation and strategy analysis [77, 78]. According to 
Hoogenboom et al. [78] and Hoogenboom et al. [77], in 
addition to the site, soil, and weather data, experimental 
data should include observed data, such as crop growth 
data, soil water, and  fertility measurements, given that 
they are needed for model evaluation.

It is worth noting that this principle of input data set 
holds across a wide variety of models and crops. These 
crop and site-specific details should be calibrated [47] 
so as to set model simulation runs to local conditions. 
Even though some parameters are considered conserva-
tive and seldom need to be adjusted during calibration, 
other parameters should be calibrated against useful field 
data [184]. The models also include empirically derived 
parameters that simulate different varieties’ performance 
from the other crop modules found with the models and 
should be set according to specific crops.

Some of the model approaches used in simulation 
include empirical models (e.g. [64, 72]), regional suit-
ability models (e.g. [109, 194]), biophysical models (e.g. 
[34], meta-models (e.g. [9, 147, 176]), and decision 
models [192]. Empirical crop models use empirical time 
series and/or panel data sets of spatial and temporal 
variation in yield and climate variables to estimate cli-
mate–yield relationships [75]. According to Lobell et al. 
[100] and Lobell et al. [101], the empirical crop model 
approach is mostly applied for agricultural climate 
impact assessments. The approach is advantageous 
because it can be applied to fit yield response func-
tions to available data, even if these data are scarce or 
only available in an aggregated form, such as monthly 

climate data. It can also be applied analytically for iden-
tifying region-specific main climatic drivers of yield 
and yield changes [75]. Predictions of validated models 
are considered valid within the range of data used to fit 
the empirical models. However, their ability to provide 
correct predictions beyond observed conditions may be 
hampered by the fact that causal relationships hypoth-
esized based on observed data may not represent the 
process relationships beyond observations [75].

On the other hand, regional suitability models are 
usually applied to quantify biophysical land use poten-
tial under current and future climatic conditions at 
a regional scale [22, 134]. This approach quantifies 
the land potential for particular crops and highlights 
regions of increasing or decreasing suitability for dis-
tinct land use types and shifts in cultivation zones. It 
integrates information collected from different sources 
to give a broad basis for multi-criteria decision-making 
for meta-models. This model is beneficial because it has 
a reduced run time, which increases the model’s feasi-
bility to be applied for explorative analyses, evaluating 
many alternative scenarios and their integrative capac-
ity [75]. Decision models, also termed bio-economic 
models, are usually based on a coupling between a pro-
cess-based biophysical model or an empirical produc-
tion model and an economic farm optimization model 
[75]. Biophysical models, on their part, simulate bio-
physical processes, such as plant growth, nutrient and 
carbon dynamics, water cycling, and flood inundation 
based on mechanistic process understanding, which is 
mathematically formalized [75]. Given that these mod-
els integrate various biophysical processes, they provide 

Fig. 2 Generic layout of a crop model and model processes



Page 8 of 24Kephe et al. Agric & Food Secur           (2021) 10:10 

an excellent basis for testing climate change impacts on 
multiple agroecosystems.

Several models, both static and dynamic, are still being 
developed and used to simulate agricultural processes. 
These models exist at the scale level of the individual 
plant through to the crop as well as the field scale [52]. 
They range from models that focus mostly on repre-
senting crop growth processes with different degrees 
of complexity, simulating water limitations to potential 
crop yields, simulating crop responses to the dynamics 
of soil water, nutrients, and soil carbon, and integrating 
the effects of climate and management (e.g. [65, 142]). 
For example, models, like the Agricultural Production 
Systems Simulator Model (APSIM) [76, 91]; Cropping 
Systems Simulation Model (CropSyst) [173]; Decision 
Support System for Agrotechnology Transfer (DSSAT) 
[83] with its crop models CROPGRO for major grain leg-
umes, CERES for cereal crops, and SUBSTOR for crops 
with belowground storage organs contained in DSSAT; 
CROPWAT/AquaCrop [61], Simulateur multidiscpli-
naire pour Les Cultures Standard)(STICS) [18, 21]; and 
the Environmental Policy Integrated Climate (EPIC) 
[189] model, simulate biophysical processes at the plot 
level. In contrast, models, like LPJmL, SWAT/SWIM, and 
MIKE, are spatially distributed models, usually applied at 
a regional or even global scale.

Some of the widely used models include APSIM, 
CROPSYST, EPIC,  STICS, System Approach to Land 
Use Sustainability (SALUS) [10, 51], AquaCrop, Environ-
ment Resource Synthesis (CERES) models [152] (see [89], 
and the Integrated Valuation of Ecosystem Services and 
Tradeoffs (InVEST) model that has been developed to 
enable decision-makers to assess trade-offs among eco-
system services and to estimate changes in biodiversity 
under different demographic, land use, and climate sce-
narios [164]. These crop growth models have been used 
in various studies to help farmers worldwide carry out 
management decisions, like sowing time, plant popula-
tion density, and irrigation regime (timing, frequency) 
under many conditions. In South Africa, some of the 
models that have been applied widely in the field of agri-
cultural management have been the Agricultural Catch-
ments Research Unit (ACRU) model [95], DSSAT, the 
Soil Water Balance (SWB) model [5], EPIC, APSIM, and 
AquaCrop. However, some of the models have mostly 
been hydrological models that have been adapted for 
agricultural water management and lack robust crop 
growth and fertilizer management [34].

Most studies in South Africa have used the AquaCrop 
model. This might be because the model is particularly 
suited to conditions where water is a key limiting factor 
in crop production, as is common to most areas in South 
Africa. The model is a water productivity model that 

simulates biomass production based on the amount of 
water transpired by the green canopy cover. Canopy cover 
development (biomass production) is based on thermal 
time. Water stress affects the transpiration rate via the 
crop water productivity parameter, which is a measure 
of water use efficiency. However, like most crop models, 
the model is also well suited for the analysis of climate 
change impacts on crop productivity, water requireand 
water consumption. The model allows for assessing crop 
responses under different climate change scenarios in 
terms of altered water and temperature regimes and ele-
vated CO2 concentration in the atmosphere. AquaCrop 
has been utilized in many studies (such as that of [1, 6, 
14, 67, 90, 119, 121, 124, 131, 133, 143, 175, 193] to assess 
yield response of crops, such as Beta vulgaris (sugar 
beet), wheat (Triticum spp.), Hordeum vulgare (barley), 
potato (Solanum tuberosum), maize (Zea mays), sun-
flower (Helianthus annuus), oats (Avena sativa), cabbage 
(Brassica oleracea), Sorghum bicolor (sorghum), Crocus 
sativus (saffron), and Solanum lycopersicum (tomato) to 
water stress.  These studies showed that AquaCrop was 
capable of simulating canopy cover for maize, cabbage, 
and potato, but not under water-stressed conditions. 
In South Africa, studies, such as Bello and Walker [17], 
Bello and Walker [17]; Nyathi et al. [128]; Hadebe et al. 
[68]; Walker et  al. [184]; Mabhaudhi et  al. [104, 105]; 
Chibarabada et al. [31]; and Mbangiwa et al. [114], cali-
brated and validated the Aqua Crop model for vegetables 
and crops, such as Amaranthus cruentus L. ex Arusha 
(amaranthus), Pennisetum glaucum (pearl millet), Gly-
cine max (soya beans), Spider flower and Swiss chard, 
sorghum, taro (Colocasia esculenta (L.) Schott.), Vigna 
subterranea (L.) Verdc (Bambara groundnut) landrace, 
and Arachis hypogaea L. (Groundnut) (Additional file 1: 
Appendix 1). The model was successful in calibration and 
simulating the response of the crop to water. Shortcom-
ings were registered due to the model underestimating 
canopy cover in some of the crops.

With the EPIC model, Choruma et al. [34] used limited 
field data (maize grain yield only) to calibrate the model 
for maize yield simulation using field-scale data under 
South African conditions and validated the EPIC model 
for maize yield simulation using independent maize yield 
data from another site.

Models, such as DSSAT or APSIM, are based on eco-
logical principles for simulating crop development and 
growth as a function of weather conditions, soil proper-
ties, and management practices (through simulated water 
and nutrient limitations to plant growth). The APSIM 
model is structured around the plant, soil, and manage-
ment modules, including a diverse range of crops, pas-
tures, and trees, soil processes including water balance, N 
and P transformations, soil pH, erosion, and a full range 
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of management controls. APSIM resulted from a need for 
tools that provided accurate crop production predictions 
in relation to climate, genotype, soil, and management 
factors while addressing long-term resource manage-
ment issues. In the APSIM model, high-order processes, 
such as crop production and the soil water balance, are 
represented as modules which relate to each other only 
through a central control unit [161]. APSIM has been 
used worldwide for developing interventions targeted at 
improving farming systems under a wide range of man-
agement systems and conditions [185]. The model has 
been used extensively in Africa, for example, in Zimba-
bwe, to assess impacts of maize–mucuna rotations on 
maize production and soil water and nutrient dynam-
ics [113], and the effects of climate change in maize 
production systems [159]. APSIM has been intensively 
experimented with within Australia, including in South 
Western Australia, which is often highlighted as having 
significant similarities with Southern Africa. This can 
account for its use in several modelling studies, such as 
the on-going modelling efforts in southern Africa [16, 
112]. The model has been calibrated by Masikati et  al. 
[113], who used it with confidence in conducting an ex-
ante analysis of alternative management strategies aimed 
at improving systems productivity.

The DSSAT Crop Systems Model allows for genetic, 
physiology, phenology, and management-based growth 
development and yield functions. The growing degree 
day concept can capture temperature and increase plant 
growth due to  CO2 fertilization. The model uses a daily 
time step, which allows for extremes. The climate vari-
ables are represented by daily rainfall, minimum and 
maximum temperature, and solar radiation, and these are 
used to calculate potential reference evaporation and the 
CO2 transpiration feedback. These are the essential input 
variables that are expected to change under future cli-
mate. Studies in South Africa that have used this model 
include those of Jones et al. [85], Estes et al. [57], Schulze 
and Durand [161], and Schulze et al. [162].

Both APSIM and DSSAT models have been used to 
assess and analyse the agronomic performance of vari-
ous systems, compared simulated yields of crops grown 
under different tillage-based practices and management 
at specific sites in diverse edaphic and climatic conditions 
in South Africa (e.g. [37, 126]).

Most models do not simulate impacts of pests and dis-
eases unless coupled externally with time-series input 
data or pest models like DSSAT CSM. Models, like 
APSIM, can simulate intercropping [76]. An unfortunate 
feature of current crop models is that modules from one 
set of models are not compatible with other models. For 
example, APSIM’s intercropping capabilities are deeply 
embedded in the system architecture and cannot be 

simply moved to other models, like DSSAT CSM. Mov-
ing pest and disease damage modules from DSSAT CSM 
to APSIM is possible but requires the coding of module 
‘wrappers’ to handle inter-model communications—a 
non-trivial task [81, 84]. This will create some hindrances 
to some model users.

As shown above, crop models have been used and 
tested over time for different crops and growing con-
ditions [197] and to simulate crop response to future 
climate changes effectively in South Africa (e.g. [97, 
107, 196] and supplementary material). These models 
have been subjected to varying degrees of evaluation 
using agronomic trial data [7, 11] and many individual 
model components (e.g. water balance, photosynthe-
sis response). They are often assessed independently, 
thereby increasing the confidence in models’ capabili-
ties to simulate crop responses under varying environ-
mental conditions, including climate change [141]. 
However, Knox et  al. [94], Thornton et  al. [177], and 
Zinyengere et  al. [199] noted that most of the studies 
using crop simulation models confidently apply crop 
models from generalized validation procedures, where 
its application has been successful which sometimes 
might not be in similar environments. During calibra-
tion, adjustments are made to the default parameters 
to reflect local crop cultivars and site conditions. The 
calibration process involves using independent data 
sets to simulate the various plant growth processes and 
conditions, including the dates of phenological events, 
such as emergence, anthesis, and maturity in sequence. 
Aspects, such as maximum leaf area index (LAI), LAI 
pattern, the above-ground canopy weight, its devel-
opment pattern, and where such data are available, 
partitioning to leaf, stem, and panicles as well as the 
grain yield and its components, are also examined. The 
model’s output variables are validated by comparing 
the simulated values with the field experimental data. 
Statistical parameters, such as Coefficient of determi-
nation (R2), slope and intercept of the linear regres-
sion, and correlation coefficient (r) between observed 
and statistical values, absolute error, relative error, 
root mean square error (RMSE), and relative RMSE, 
are used to evaluate model performance. In quantify-
ing the effects of calibration on simulated crop yield 
and understanding the uncertainties associated with 
the calibration procedures, differences between model 
outputs from simulations at different steps are analysed 
using the mean, coefficient of variation (CV) (ratio 
of the standard deviation to the mean, expressed as a 
percentage), and estimated linear trend in simulated 
yields between simulations [190]. Although validation 
procedures were followed in most of the above-cited 
studies, they tended to be highly generalized—usually 
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a correlation between observed and modelled yields 
with little analysis of the agreement level between the 
two, which can be based on the criteria choice of model 
used. We argue that the validity of crop simulation 
models under climate change conditions has not been 
adequately established. Again, point-based validation 
from experimental sites as cited by Chipanshi et al. [32] 
is tested as accurate even though this generalized vali-
dation does not consider the variations in modelled cli-
matic, soil, and management conditions in space [62]. 
The input data determine the resultant ease and quality 
of the results from these simulations.

Models, such as the DSSAT and APSIM, have been 
used successfully in several studies in many developed 
countries. Still, its wide application in South Africa and 
other African countries have been limited, primarily due 
to the complexity and input requirements which often 
make it difficult for researchers in developing countries 
to run these models (e.g. [33, 37, 81, 84, 104]). Further-
more, crop yield estimation results have been shown to 
vary substantially in terms of accuracy and robustness 
[130, 157]. This variation comes because many Crop 
Growth Models (CGMs) require extensive input data 
that hamper their applicability outside of research condi-
tions. For example, the World Food Studies (WOFOST) 
model [182] requires about 40 parameters to characterize 
the crop under evaluation [93, 179]. To create an optimal 
balance between simplicity, accuracy, and robustness, 
the Food and Agricultural Organisation (FAO) has 
developed the model ‘Aqua Crop’ [172]. The Aqua Crop 
model, when compared to other models, such as APSIM 
and DSSAT, uses a relatively small number of param-
eters and input variables compared to the earlier CSMs. 
AquaCrops simplicity coupled with fewer input require-
ments relative to other crop models [183], make ideal for 
simulating due to its ease of calibration and minimum 
input requirements compared with established models.

A view we share with Oteng-Darko et al. [129] is that an 
ultimate crop model would physically and physiologically 
define all relations between variables the model repro-
duces and universally real-world behaviour. However, 
such a model cannot be developed because the biologi-
cal system is too complex and many processes involved 
in the system are not fully understood [80]. Furthermore, 
even if an ideal crop model could be produced, the col-
lection of the highly precise system parameters and the 
input data for the crop environment would be a formida-
ble task [129]. Thus, the level of detail involved in a crop 
model is intricately linked to the model’s end-use and 
the precision required. Even when a judicious choice of 
model is made, aspects of model limitations, challenges 
involved in simulation, and challenges in data acquisition 
must be borne in mind such that modelling studies are 

put in the proper perspective, and successful applications 
are achieved.

Model calibration—minimum data requirements 
versus a full set of data
Most crop growth models require a substantial number 
of input data, which creates a limitation in their useful-
ness for research purposes [89] and other decision-mak-
ing. Monteith and Moss [120] believed that each crop 
growth model requires at least data in the form of infor-
mation regarding crop management, the soil, weather, 
temperature, phasic development, and growing degree 
days. It would have been ideal for a model to have at least 
information about soil composition, weather, and man-
agement practices. Still, often than not, these data are 
not accessible [89] or available. Hunt and Boote [79] have 
put forward a list of the minimum amount of input data 
that they think are needed for operating crop growth 
models at a given location (Table 2). These data require-
ments, though reasonable, will prove to be a challenge in 
the case of slope and aspect since these cannot be easily 
calculated and most often are not recorded. An intensely 
calibrated and evaluated model can be used to effectively 
conduct research that would, in the end, save time and 
money and significantly contribute to developing sus-
tainable agriculture that meets the world’s needs for food 
[129]. Hadebe et al. [68] concurred with this and stated 
in their study on sorghum that sorghum genotypes dif-
fer significantly in growth and development characteris-
tics from the default file. The use of minimal data input 
calibration potentially compromises the prediction of 
crop yield. This notion can be applied to other crops with 
different growth parameters to the default ones found in 
model modules.

Challenges in using crop simulation models 
in South Africa
Models provide opportunities for realistic simulations 
for a given environment, using a range of management 
practices, testing the interactions between crops, and the 
biophysical environment. The simulation mechanics may 
appear straight forward, where input data are entered 
into the model and ran. The results are compared to those 
of other simulations for validation. However, in practice, 
the modelling process involves numerous data availabil-
ity issues and quality scaling from global climate change 
data to the plot scale, where these models typically oper-
ate. It has been shown that the unsatisfactory perfor-
mance of models, especially at the regional scale, can 
be attributed to the inappropriate consideration of fac-
tors and processes determining yield variability (e.g. [89, 
104, 105, 129, 146]) and/or the aggregation of input data 
which may inconsistently reproduce the spatial variability 
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of growing conditions, such as soils and climate within a 
region (e.g.   [69]). Many challenges encountered in crop 
simulation modelling are detailed in literature. The fol-
lowing sections describe some of the challenges encoun-
tered in crop modelling in South Africa.

Lack of available data in crop model input format
Model performance in South Africa is limited due to the 
quality of input data, as cited by Lüke and Hack [102]. 
Most simulation models require that farm management, 
meteorological, and crop phenological data are reli-
able and complete. Unfortunately, this information is not 
always available, or where available, they are incomplete. 
In South Africa, for example, although there has been 
a rapid expansion of the SA weather station network in 
the past decade, significant gaps remain, especially with 
respect to solar radiation and rainfall [167].

The challenges in using crop models in South Africa 
can be found in a couple of studies. For example, Zinyen-
gere et al. [198] assessed the use of crop models in south-
ern Africa’s drylands centred on the DSSAT model. The 
study focused on three southern African countries: Leso-
tho, Swaziland, and Malawi. The crops of interest were 
maize, sorghum, and groundnut. Input data used in the 
model for their study included crop management prac-
tices, such as planting dates, planting densities, fertilizer 
application amounts, and application; data on the crop 
growth and phenology. These data were obtained from 
reported experimental trials from relevant literature. Val-
idation of results at point scale was based on one or two 
sites in a district where trials were carried out for only 
2 or 3 years. Simultaneously, validation conducted at the 
district scale was for over six to fourteen cropping sea-
sons. The simulations were carried out with limited input 
data with regard to the spatial variation in climate, soils, 
and management practices. However, their result showed 
that despite the limits posed by insufficient input data, a 
satisfactory test of crop model usefulness for capturing 
crop yields in study locations was conducted. Therefore, 
the question that arises is to what extent is a ‘satisfactory’ 
model to feed the need for the development and imple-
mentation of policies that address the risk and vulner-
ability of agricultural systems in marginal production 
areas, adaptation strategies to curb the effects of climate 
change on food-producing systems?

The study by Zinyengere et al. [198] showed that even 
under the conditions of limited data input, the DSSAT 
model’s application was able to produce from location-
specific experimental trials and district-wide study good 
yield estimates of mean crop yields in all study loca-
tions. The results further indicated that the model could 
have good results on impact studies focusing on crops’ 
long-term responses to climate. However, even though 

the model performed well in capturing mean yields and 
long-term average impacts under a wide range of con-
ditions with data limitations, this might not be the case 
in situations where yields are obtained under extreme cli-
matic conditions with specific crops and locations. It is, 
therefore, their conclusion that DSSAT, in this instance, 
does not adequately capture the variations in yield due 
to extreme climate conditions and, more so in this case, 
because the required inputs were not sufficient. Thus, 
model parametrization and calibration were set up using 
average yields. This notion is supported by Raes et  al. 
[140], who stated that in the AquaCrop model, the use of 
time scales other than daily will yield less reliable results 
when using this model.

A similar study by Gaiser et  al. [62], while validating 
the EPIC model in the demands of western Africa, also 
found limiting data to be a problem for crop modelling. 
A mix of secondary input data obtained from an experi-
mental station, an on-farm research field, and farmland 
in tropical humid to semi-humid zones were tested 
using the EPIC. Although the results obtained indicated 
rice sensitivity to seasonal rainfall, its robustness under 
severe water stress was limited. Furthermore, in a sce-
nario with multiple-year calibration for various vari-
ables, such as plant biomass, leaf area index, and yield, 
the uncertainty in the model prediction and validation is 
related mostly to the lack of quality of input data (estima-
tion of the impact of drought spells on grain yield) [62]. 
Although the models employed in the studies project the 
response of crops to the changing climate to an extent, 
their results draw on normal ranges in climate variability. 
The issues of concern are the frequency of occurrences 
of extreme climatic events that have been projected for 
South Africa (e.g. [56, 196]) and because of data limita-
tions, these models cannot adequately project. Thus, crop 
simulation models require detailed soil input parameters 
(soil depth, soil chemical composition, and soil physical 
characteristic) associated with processes that limit crop 
growth under water scarcity conditions or enhance yields 
under wet conditions. These parameters include water 
retention characteristics, organic matter, nitrogen accu-
mulation, and climate data, such as temperature, rainfall, 
and potential evapotranspiration. According to Zinyen-
gere et al. [198], the availability of a more comprehensive 
detail of agronomic and management practices, espe-
cially the application of fertilizer and sowing times, which 
are known to affect crop yields in extreme climatic condi-
tions considerably, will help improve model performance.

Also, the general absence of a spatial component in 
crop growth models is considered a serious shortcoming 
[36]. This is especially so for yield estimations at regional 
scales in areas, such as South Africa. Determining model 
inputs for the required spatial and temporal dimensions 
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is a burdensome task since the necessary assumption 
of spatial homogeneity often leads to errors in the esti-
mated outputs [98]. There exists considerable uncertainty 
concerning the spatial distribution of farm management 
practices and soil and weather conditions [69].

Poor access to necessary data for model calibration 
and validation
According to the Organisation for Economic Co-opera-
tion and Development (OECD) and other international 
organizations, data have become the key infrastructure 
for 21st-century knowledge society and economics. Data 
are a capital good that can be and need to be used across 
countries and societies for a theoretically unlimited range 
of purposes. Therefore, broad access to it will be crucial. 
However, this is not the case in all disciplines and coun-
tries, especially for research conducted in the middle- 
and low-income countries where data sharing culture is 
just beginning to gain traction [3]. According to Alter and 
Vardigan [3], most authors acknowledge the potential for 
the exploitation of the local population and other forms 
of harm that might affect research participants, includ-
ing loss of privacy, and issues around informed consent, 
including questions about the rights of research subjects 
and potential benefits to the local community. Other bar-
riers cited included the time and effort it takes to make 
data ready for sharing and the lack of perceived valida-
tion and recognition for researchers and the research 
team for their efforts.

As is with other research disciplines, a significant hin-
drance to crop modellers is the unavailability of unre-
stricted access to historical data. Most often, modellers 
are faced with the issue of getting historical climate 
data and crop management data from private compa-
nies and individuals. Given that these data are privately 
owned, they are not obliged to share with scientists. 
Irrespective of the motive, data withholding has nega-
tive consequences. For example, a study by Campbell 
and Blumenthal [25] found that 28 percent of those sur-
veyed were unable to replicate research due to another 
scientist’s refusal to share, 24% had significant delays in 
publishing, and 21% had to abandon a research interest 
altogether.

In South Africa, there is a notable lack of legislation 
that obliges public access to private owned data, a lack 
of sustainable funding mechanisms for long-term collec-
tion and curation of important classes of data, and tech-
nical difficulties in managing and sharing data. A study 
by Koopman and De Jager [96] carried out at the Uni-
versity of Cape Town (UCT) showed that even though 
past research had generated digital data in many dif-
ferent formats, these data are being reused and shared 
within a controlled group of collaborating researchers. 

Accordingly, their study indicates that very few research-
ers were willing to allow free use of data sets under their 
control. Hence, data ownership was found to be a signifi-
cant limiting factor for data sharing. Data ownership var-
ies between the funder, the institution, the research unit, 
the supervisor, or the student, or a combination of all 
these owners. This situation further complicates the issue 
of data sharing, given that it is not entirely clear who has 
rights to the data, talk less about sharing it. From their 
study, Koopman and De Jager [96] reported that ‘when 
asked if their data should be made available for future 
research, 88% of researchers responded positively’. How-
ever, they further indicated caveats to this response with 
cascading requirements for making data available. A 
cited example was when the respondents were willing 
to share their data only after publication and only if the 
data generator was offered co-authorship [96]. It was fur-
ther noted that the data that were to be shared by those 
respondents who indicated they were willing to share 
were data that already had an open mandate.

They also discovered that there were analogue data sets 
that were ‘available’ but were mostly invisible and una-
vailable due to logistical issues, such as lack of description 
and archiving. Hence, it can be assumed that if an educa-
tional institution, such as UCT, faces such challenges in 
making data available to other researchers, this practice 
is not uncommon to different intuitions. The question 
then to contemplate is whether if rapid data sharing were 
maximized, could any of the challenges confronting the 
world, such as natural hazards, food protection, and cli-
mate change, be solved or significantly improved? There-
fore, until such a time where data ownership is resolved, 
data sharing will remain a barrier to data availability for 
research everywhere and in South Africa.

Difficulties in using data from climate change models 
and scenarios
Modelled climate data are available in South Africa from 
the University of Cape Town and the CSIR. However, as 
also noted by Ziervogel et  al. [196], despite this relative 
abundance of locally developed climate scenarios and 
the existence of climate expertise, only a limited num-
ber of climate change impacts studies have made use of 
both statistically and dynamically downscaled data. Fur-
thermore, impact studies use data from CSAG and CSIR 
scenarios, GCM outputs from the international Coupled 
Model Intercomparison Project (CMIP) archives, and 
RCM downscaled products from global centres. As a 
consequence of this ‘pick and mix’ approach to the use 
of climate scenarios, it becomes difficult to compare and 
synthesize the results of different impacts studies [196].
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Also, as noted, climate model outputs are not primarily 
maps and do not have geographic features in the way in 
which we are accustomed to reading them [27]. Instead, 
they show information with spatial-scale applicability, 
which depends on the climate itself and is usually more 
significant than the domain of that grid cell [70]. There-
fore, crop modelling studies either use the grid on which 
the input climate simulations were generated or they 
downscale those data to a more relevant spatial scale. 
Even though a wide range of downscaling methods exist, 
each of them has its pros and cons. Downscaled climate 
model grids are a source of climate data for modellers to 
use; however, it may not be the best way in some situa-
tions when field-scale models are used. Some crop mod-
els have spatial-scale issues and need climate data in a 
time step that can make regional-scale information chal-
lenging to obtain. Likewise, the potential need to account 
for microclimate is absent in most downscaled climate 
data. In South Africa, climate data on some point scale is 
missing and can make studies in those areas difficult.

Sometimes climate data obtained are in formats that 
need further processing and conversion before they can 
be used in models. Climate data with file extensions, such 
as NetCDF files, pose a problem to modellers who can-
not write codes to be able to use them. Some of these file 
extensions necessitate expertise in fields, such as coding 
to manage or utilize them. Therefore, it becomes a situ-
ation where there are data available, but it is of no use to 
the intended user due to a lack of expertise.

Complexities in methodologies used for crop simulation
The various choices made by modellers when calibrating, 
running, and evaluating models result in some limita-
tions. Justifying these modelling choices is often missing 
from crop-climate studies [186], making it difficult to 
compare different studies directly. According to Chal-
linor et al. [28], a too complicated model will need more 
parameters that can be constrained by observations, 
thereby increasing the risk of reproducing observations 
without correctly representing the processes involved. 
This is particularly true for cases where studies are to be 
conducted in areas with limited resources. Additionally, 
some parameters are not directly observable and must 
be inferred as part of the calibration procedure. This 
increases the risk of over tuning where the right answer 
is obtained for the wrong reason due to an excess of tun-
able parameters that cannot be related directly to obser-
vations [28].

Therefore, judicious model choice and calibration 
are crucial, as is the evaluation of historical perfor-
mance (Easterling  et al. 1996) if our simulations are to 
be consistently correct. A precise critical assessment of 

methodologies and model projections can support the 
identification of consensus views.

Towards an integrated method in obtaining 
suitable input data for a crop simulation model
Several challenges are involved in the utilization of crop 
growth models, as discussed above. Further limitations 
as cited by Bhatia [19] include the associated cost (time, 
money, and resources) in obtaining the necessary input 
data needed to run the model, insufficient or lack thereof 
of spatial information in some cases, and the quality of 
the required model input data quality when obtained. It 
is of the essence to formulate necessary steps in collect-
ing data inputs for crop simulation models. Worth noting 
is that the ease with which such data can be obtained will 
depend on the user’s expertise and familiarity with the 
proposed data collection methods. Methods of data col-
lection involve qualitative and quantitative approaches, 
using  both primary and secondary data sources.  The 
methods range from grey literature review,  field tri-
als,  controlled environment (greenhouse) experiments, 
and remote sensing (Fig. 3).

Literature review as a source of input data
Tingem et al. [178] believed that crop model calibration 
can be performed using ‘loose’ parameterization. Their 
rationale is that if the crop model’s performance is sat-
isfactory with limited parameterization, then in a case 
where adequate data are available such performance 
could even be better. Donatelli et  al. [44] conducted a 
study looking at the impact assessment of climate change 
scenarios on agriculture over the European Union’s Cur-
rent Member States (EU27). They fused the periods of 
2020 and 2030 against a baseline centred on the year 
2000. Resultant yields of wheat, rapeseed, and sunflower 
were simulated with the CropSyst mode under a scenario 
of potential and water-limited conditions. According to 
them, model calibration can be done with the adjustment 
of a parameter within a reasonable range of fluctuation 
suggested guided by various experiments, expert opin-
ions, or background knowledge. Driven by this line of 
reasoning, Donatelli et al. [46] calibrated and adjusted a 
few crop input parameters based on outputs of growth 
characteristics and minimizing the differences between 
actual (as reported in the literature for crops grow-
ing in well-managed conditions) and simulated yields. 
Other crop-specific input parameters, such as Thermal 
accumulation (degree days), emergence, days to onset 
of flowering, days to start of grain filling, days to physi-
ological maturity, base temperature (Tb), cutoff tem-
perature (Tcutoff), phenologic sensitivity to water stress, 
photoperiod, growth rate, as well as days to physiological 



Page 15 of 24Kephe et al. Agric & Food Secur           (2021) 10:10  

maturity required to feed the model, were extracted from 
the various literature (e.g. [15, 45, 179]).

Similarly, Zinyengere et  al. [198], in their study, 
obtained input data on crop data and management prac-
tices (e.g. planting dates, planting densities, fertilizer 
application amounts, and timing) for maize, sorghum, 
and groundnut from reported experimental trials and 
relevant literature. The parameterization of DSSAT use 
in their study was based on typical values obtained from 
literature and default values from the model user manual, 
thereby conforming to what was posited by Donatelli 
et al. [44].

In the same way, soil information can also be obtained 
from Literature. Authors such as Ritchie et al. [151], Gijs-
man et al. [63], Batjes [13], and Romero et al. [154] pro-
posed different approaches for obtaining adequate soil 
data for crop yield simulations. In South Africa, the Uni-
versity of KwaZulu Natal (UKZN) has a spatial database 
of soils and model-ready daily weather data for 1950–
1999 for 5000 quinary catchments. These data are a reli-
able source of input data to be used as inputs for some 
models.

Remote Sensing as a source of input data
Data from satellite remote sensing (RS) offer signifi-
cant benefits when used to assess agricultural yield and 
production during cropping seasons due to their spa-
tial, temporal, and spectral resolutions, availability, and 
affordability [8]. High temporal and spatial resolutions 
with sufficient lead time near-real-time crop produc-
tion estimates over large areas can be obtained. This can 
solve the issue of cost, given that getting these data is a 
low cost, and thus can provide a cheaper alternative for 
natural and agricultural resources surveys. Furthermore, 
RS has been shown to solve to a certain degree the uncer-
tainty of spatial information on the crop parameters that 
are used for crop modelling [89]. Timely and correct 
information on crop phenological stages is critical for 
crop simulation models. The availability of up-to-date 
and accurate information on the crop status at the (sub-) 
plot or farm scale will benefit crop modellers. This is par-
ticularly so given that data from RS serve as input data 
with ranges in time scale from hourly, daily, or weekly 
time frames [127], which are invaluable when utilizing 
crop models.

Fig. 3 An integrated approach to data availability for input into crop models
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RS’s ability to generate information in both spatial and 
temporal domains makes it crucial for successful analy-
sis, prediction, and validation [110] and projections. So 
far, both RS applications and dynamic simulation models 
have played significant but different (and mostly sepa-
rate) roles in generating such information [82]. Combin-
ing RS applications and dynamic simulation models 
has been explored in several studies [36, 139, 181], but 
these approaches aimed at quantitative biomass, leaf 
area index, and canopy nitrogen estimates from RS data 
to reconstruct crop growth curves used for calibrating 
dynamic simulation models at the field scale.

Another more direct technique to integrate RS obser-
vations in crop growth simulation models has been 
shown by Boegh et al. [20] and Jongschaap [87]. A priori 
Wiegand et al. [187] and Richardson et al. [150] proposed 
the use of RS as a means of improving crop model accu-
racy. The authors suggested that data on Leaf Area Index 
(LAI) obtained spectrally can either be used either as a 
direct input into a physiological crop model or as an inde-
pendent check for model validation. Studies have shown 
that RS can provide important information on agro-
nomic environments at various scales, such as that of the 
leaves, plants, sub-fields, fields, regions, and even glob-
ally. Efforts have been made to derive useful information 
from RS images to get input data to support various data 
needs and activities. Some of these include data on leaf 
and plant biochemical composition, plant (health) status, 
crop (health) status, and regional and global estimates of 
vegetation cover (including arable crops) to improve farm 
management and to support local-, regional-, or higher-
scale policymakers.

The combinations of RS and crop simulation can be 
synergistic in several ways. The main area of interest here 
is how this combination can enhance model calibration 
and provide needed data for the effective use of a crop 
simulation model. In lieu of this, Maas [103] initially pro-
posed different approaches to combine a crop model with 
RS observations (radiometric or satellite data). A revision 
to the suggested was later done by Delecolle et al. [40] and 
Moulin et al. [123]. In their classification, five methods of 
integrating RS data into crop models were shown. These 
include (a) the direct use of a driving variable estimated 
from RS data in the model; (b) the updating of a state 
variable of the model, such as the LAI derived from RS 
(‘forcing’ strategy); (c) the re-initialization of the model 
which involves the adjustment of an initial condition to 
obtain a simulation in agreement with the RS-derived 
observations (d) the re-calibration of the model which 
is the adjustment of model parameters to get a simula-
tion in accord with the remotely sensed derived observa-
tions, also called ‘re-parameterization’ strategy; and (e) 
the corrective method, which entails the establishment 

of a relationship between the error in some intermediate 
variable as estimated from remotely sensed measurement 
and error in the final yield. This relationship may apply to 
a case in which the final yield is unknown [39].

Drawing from the studies of Maas [103], Delecolle et al. 
[40], and Moulin et al. [123], the study of Jongschaap [87] 
went on to simplify their classification by suggesting two 
approaches where remotely sensed data could facilitate 
crop simulation model use. According to him, remotely 
sensed data could provide estimates of intrinsic values 
needed to set the crop simulation environment. These 
include aspects, such as crop classification, emergence, 
flowering, and harvest dates. Secondly, RS can estimate 
the values of biophysical variables that can be used to 
drive the simulation model during run-time (‘run-time 
calibration’). Jongschaap [87] used RS observations of 
model variables (leaf area index and canopy nitrogen) 
for ‘run-time calibration’ by resetting the simulated value 
with the value estimated from RS data. This approach 
resulted in more accurate predictions of the dynamics of 
the crop-soil system’s characteristics, including variables 
that were not directly adjusted. A more innovative and 
useful combination of both RS and simulation modelling 
integrates knowledge of lower-scale processes in the crop 
and soil systems. The relevance of the remote sense data 
depends on the need of the crop simulation model and 
the availability of other needed data, and the user’s know-
how. Therefore, the sensor’s spectral and spatial resolu-
tion will play a significant role in the final decision of the 
remotely sensed data used. Phenological events, such as 
emergence, flowering, and maturity (followed by crop 
harvest) are difficult to predict and, in general, are not 
accurate enough represented in simulation models [137]. 
Most farm experiments conducted in South Africa and 
especially the smallholder farmers do not keep records of 
their various farm management practices. Hence, records 
do not necessarily have accurate data input as required 
by the crop simulation models. These events’ timing has 
a substantial impact on crop performance and yield, 
both in reality and in simulation models. RS informa-
tion allows identification of the timing of those events, 
which can be used to adjust simulation models. Satellite 
imagery has likewise been used elsewhere to reset model 
simulations with measured data for crop cover and 
growth status (e.g. [48, 87]).

Time series of estimates of biophysical characteristics 
retrieved from RS can be used for model calibrations. 
A study by Clevers et  al. [36] showed the advantages of 
using RS, whereby SPOT data were used to calibrate a 
wheat growth model under Mediterranean conditions 
through the estimation of leaf area indices and introduc-
ing these as calibration sets. Jongschaap and Schouten 
[86] successfully applied model calibration by estimating 
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regional sowing, emergence, flowering, and harvest dates 
for wheat. Simulation models are often validated by RS 
estimates of biophysical variables, such as biomass pro-
duction on a regional scale [170].

However, Dadhwal [39] pointed out that crop simula-
tion’s driving variables, such as weather inputs of daily 
observations of maximum and minimum temperature, 
solar radiation, relative humidity, and wind speed models 
can be compromised. A reason for this can be, as cited by 
Moulin et al. [123], the effects of cloud cover on sensors 
and platforms, which can lead to drawbacks and cause 
inadequate availability of RS-derived parameters. How-
ever, this shortcoming can be overcome by using other 
data acquisition methods to make available the required 
data if the correction of the images fails. The advantage 
of getting a clear image from RS is that the data provide a 
quantification of crop parameters over larger with mini-
mal labour and material-intensive methods as opposed 
to field research. While crop models can provide a con-
tinuous estimate of crop growth over time, RS provides 
a multispectral assessment of instantaneous crop con-
ditions within a given area [40]. The combination of RS 
and crop models can only be beneficial to crop modellers. 
Crop production and resource management in South 
Africa could benefit significantly if this RS is combined 
with crop modelling.

Models as input data sources
Some crop simulation models in themselves can provide 
input data that can be utilized in other models. Most of 
CSM comes with various inbuilt modules. Models, such 
as APSIM, DSSAT, and AquaCrop, have inbuilt modules 
with soil profiles or generic soils favourable to particu-
lar crops. Exploring the summary description of various 
in-built modules, such as the soils, soil characteristics, 
such as the water-holding capacity, and lower and upper 
drained limit, which are essential parameters required 
for running crop models, can be generated. Other soil 
parameters, including the soil albedo, a soil water drain-
age, soil water-holding capacity, nutrient content, texture, 
and particle sizes, can be obtained from soil databases, 
such as ISRIC or FAO, in addition to the production site 
information.

With regard to climate data in South Africa, both sta-
tistical [70, 71] and dynamical downscaling [53, 54] on 
multi-decadal time scales have been ongoing for a good 
number of years at local universities and institutions, 
such as the University of Cape Town and the Council for 
Scientific and Industrial Research (CSIR) [97]. The Coun-
cil for Scientific and Industrial Research (CSIR) focuses 
on global and regional modelling for seasonal forecasts 
and decadal to centennial projections and coupling to 
land surface dynamics [196]. The CSIR developed the 

conformal-cubic atmospheric model (CCAM) [116–
118] at a regional scale. The model has been applied to 
study southern African atmospheric dynamics over a 
wide range of time scales from daily weather variability 
to multi-decadal variations and change [55]. The model 
was successfully used to realistically represent the strong 
temperature increases observed over southern Africa 
during the past five decades and further projected sig-
nificant warming to occur during the twenty-first cen-
tury [53]. The University of Cape Town, Climate System 
Analysis Group (CSAG), and the Department of Ocean-
ography on the other hand model global and regional 
atmospheric, ocean and coupled modelling with a focus 
on ocean–atmosphere process studies, seasonal forecast-
ing, and climate change projections (DEA, 2011). With 
a slightly different focus, the CSAG has a long history of 
statistical downscaling using neural net approaches [70] 
but has also produced a limited set of scenarios with 
regional climate models (RCMs), most notably MM5 
and Weather Research and Forecasting model (WRF) 
[174]. The advantage of this in-country modelling exper-
tise and experience is that substantial evaluation, tuning, 
and development of the statistical and dynamical model-
ling tools that produce climate change projections have 
occurred and will continue to be fine-tuned to meet 
country demands.

Software as data sources
Various software can be employed to compute miss-
ing parameters for input data. Downscaled climate data 
provide rainfall and temperature data but often miss-
ing solar radiation and Evapotranspiration.  A series 
of software, such as the FAO ETo calculator, can  be 
utilized to get  other climate variables as needed.  For 
example,  using the temperature and rainfall projections 
for the future,  future daily solar radiation can be esti-
mated depending on  the minimum and maximum tem-
peratures, Julian day, latitude, altitude, and an empirical 
parameter described by Allen et  al. [2].  Food and Agri-
culture FAO calculator can  be used to calculate the 
evapotranspiration based on the temperature and rainfall 
data. Depending on the model’s needs, various parame-
ters can be obtained from available variables and used to 
feed models.

Although measured data are always preferable to prop-
agated or derived weather data, daily data for other vari-
ables required for crop modelling besides Tmax, Tmin, 
and precipitation (i.e. solar radiation and vapour pres-
sure) can be estimated in the absence of measured data 
with a reasonable degree of accuracy using temperature 
data or data retrieved from other sources. An exception 
is wind speed, which cannot readily be estimated from 
other variables. Hence, a default world average value of 
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2 ms−1 is typically used to estimate ETO when measured 
wind speed data are not available [2]. In contrast, solar 
radiation can be calculated using equations that rely on 
sunshine hours (e.g. Angstrom formula) or temperature 
(e.g. Hargreaves formula) [2]. Vapour pressure is typically 
derived from relative humidity or dew point tempera-
ture measurements. In the absence of measured data, 
vapour pressure can be estimated from the measured 
Tmin, assuming that dew point temperature is near the 
daily Tmin [2]. In all cases, it is desirable to locally vali-
date these approaches using good-quality observed data 
from a representative subset of years and locations in the 
region of interest.

Experimental trials
Where time and resources are available, experimental 
trials have been performed and used in validating crop 
models in various locations in southern Africa (e.g. [106, 
166]). These trials are valuable because they provide data 
for parameterizing and validating crop models. Details 
on crop phenology and genotype of each crop can be 
obtained from seed pamphlets. Apart from experimental 
trials, information on crop management can be obtained 
from expert agronomists, DAFF pamphlets on crop pro-
duction, and the farmers themselves. The rationale here 
for every experiment or field trial conducted should be 
geared towards data collection as if it were meant for 
entry into a crop simulation model.

Participatory stakeholder approaches and key informant 
as data sources
Participatory stakeholder approaches to modelling have 
been shown to bring about benefits of improved contex-
tual calibration and decision-making relevance and sub-
sequent trust in, and action on, the emergent evidence 
bases produced by the research [30, 138]. This is further 
backed by the agricultural model intercomparison pro-
ject (AgMIP), which has explicitly recognized the need 
for modelling communities to engage with stakeholders 
throughout the modelling process [155].

Studies where farmers, especially smallholder farmers, 
have been involved in modelling actual on-farm condi-
tions and yields in South Africa are scarce. Where these 
experiments have taken place, such results will be invalu-
able for modelling because most often, researchers do not 
usually have access to data on-farm management prac-
tices of most smallholder farmers. As suggested by Snapp 
et al. [168], there is a need to build research approaches, 
where ‘quality farmer–researcher partnerships approach 
is employed to make technology testing more realistic’’. 
Suppose this relationship is successfully established, then 
according to [125]. In that case, the smallholder farmers 
will most likely accept the results and recommendations 

from a research study if they were engaged in the entire 
process. In their paper, Ncube et  al. [125] further pre-
sented the results of 3-year participatory research on 
improving soil fertility. The participatory research 
approach was used to develop strategies for improving 
maize yield under farmer conditions in semi-arid envi-
ronments and assess farmer participation dynamics and 
how fully engaging farmers could be of assistance in 
the development of soil fertility management. However, 
given the site and season specificity of on-farm experi-
mentation, the interpretation and extrapolation of results 
remain an issue.

Several studies have been undertaken to show simu-
lation modelling as an analytical tool in participatory 
research, especially in the area of fertility management 
(e.g. [43, 153]), and applied in smallholder farming sys-
tems in Africa [42, 163]. Carberry et  al. [26] reported 
using a simulation model with farmers and researchers to 
explore the climatic risks associated with the application 
of various crop management technologies and as an aid 
to design farmer experimentation. The conclusion from 
these studies is that where farmers participate in the 
actual experiments, a condition for knowledge building 
is created. The farmers themselves will become involved 
in collecting data to improve the management of their 
field. Their data will be a significant contribution in pro-
viding input data into various models. There will not be 
a need for long field trials since existing data are already 
available.

Increasing transparency and inter‑comparability 
in modelling
Comparability across model simulations is only possi-
ble when some standard methods or protocols are used. 
Inter-comparability of studies needs to go beyond the 
choice and performance of models. Frameworks and 
assumptions need to be clearly stated. Studies might 
be assessed against a set of criteria, thereby forming an 
evidence base, data sets, and model parameterization to 
evaluate their potential impact across temporal or spa-
tial scales. For example, Ruiz-Ramos et  al. [158] used 
an ex-post plausibility check in ensemble wheat model-
ling, which goes some way towards increasing robust-
ness. Platforms, such as AgMIP, and the Consultative 
Group on International Agricultural Research (CGIAR) 
try to harness data to enhance the impact of interna-
tional agricultural research. One of the goals of AgMIP 
is to compare different modelling approaches directly. 
The International Consortium for Agricultural Systems 
Applications (ICASA) data standard was adopted as the 
storage format. AgMIP members developed translators 
and tools to convert the format to and from the various 
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crop models [135, 136]. This standard carefully describes 
agronomic and crop management data.

Similarly, the CGAIR has the GARDIAN (Global Agri-
culture Research Data Innovation and Acceleration Net-
work), which enables the discovery of agricultural data 
sets and publications across the CGIAR system and 
beyond. As advocated by Reynolds et  al. [149], a global 
‘science commons’ attitude should be encouraged with 
funding bodies facilitating timely sharing of data by 
investing more explicitly in research publication, with the 
condition of public access [148]. These could also result 
in more thorough reporting of experimental treatments 
and conditions by researchers, as well as greater availabil-
ity of data sets that are usually not written up [149].

Geographic Information System (GIS)
Burrough and McDonnell [23] have defined GIS as an 
important set of tools for collecting, storing, retrieving 
at will, transforming, and displaying spatial data from the 
real world for a particular set of purposes. Most global 
databases with data on future climate projections and 
soil information come in GIS format. Examples of such 
include FAO soil maps for sub-Saharan Africa, World 
Clim database for world climate, and a host of others. 
GIS provides a framework where such data can be que-
ried, and desired information extracted through a series 
of GIS processes and used as inputs into crop simulation 
models.

Conclusion and recommendation
The challenges of producing locally relevant and climate-
informed results from crop simulation models across 
various time frames from seasonal to future climate 
change for agriculture is complex. In order to establish 
resilient and sustainable agricultural systems in the face 
of climate change, there is a need for effective adaptation 
measures to be established. This will require a cross-scale 
and cross-disciplinary approach to adaptation strategy 
development and implementation. Agricultural adapta-
tion measures, such as livelihood changes and farm man-
agement practices, should be appropriate, with results 
validating such measures based on local socio-cultural 
and agro-ecological conditions.

The unavailability of input data for crop models func-
tions as barriers to advances in crop research in South 
Africa. Not only does it limit the type of research that 
can be carried but it also limits research on most crops, 
including cereals, oilseeds, pastures, and forage. The 
availability of appropriate input data for crop models 
could provide valuable information on how, where crops 
should be planted in specific areas and reduce the mar-
gin of error in agronomic and field management prac-
tices. As a research tool, the proper development and 

application of various data collection methods can help 
show ways in which gaps in our knowledge in data acqui-
sition could be filled, thereby ensuring and enabling a 
more efficient and targeted research planning. Results 
obtained from simulations where appropriate climate, 
agronomic, soil, and crop physiological data are used can 
support extrapolation to alternative cropping cycles and 
locations, thus permitting the quantification of temporal 
and spatial variability.

Most models are virtually untested or poorly tested in 
most cases because data are not available or not avail-
able in the proper format [142]. Hence, their usefulness 
is unproven. From a similar point of view of as Rauff 
and Bello [142], it can be said that ‘it is easy to formu-
late crop models than to validate them’, especially in areas 
such as South Africa. This situation is cause for concern 
to researchers and many agronomists. Hence, many 
researchers are reluctant to engage in research dealing 
with crop simulation because of the complexity of the 
models, lack of quality data, lack of model testing, and 
the inevitable inaccuracies when such testing is done.

However, all is not lost, given that this study presents 
a practical approach to obtain specific parameters for 
crop models. By utilizing currently available data sets 
from various sources, models can be calibrated to cap-
ture the cultivar characteristics, management practices, 
and the environmental conditions prevalent in a specific 
site. This method of obtaining input data sets can eas-
ily be extrapolated to various crop models, given that 
it proposes several data sources for input data. To get 
needed input data for crop models might facilitate model 
calibration and emphasize targeted simulations rather 
than calibration procedures. Region-specific phenology 
parameters are often easy to estimate, given the provision 
of weather data and crop calendar information. Yet, for 
parameters related to management and yield, correction 
factors, like planting density, fertilizer application, weed-
ing, water management techniques, and information on 
their regional details, are usually scarce and literature 
study can provide loose parameters.

This study highlights the promise of using various data 
sets sources to calibrate crop models for crop simulation, 
thereby making the calibration, validation, and simula-
tion with crop models. Therefore, it is opportune to test 
and summarize the approach for multiple vegetables, 
field and forage crops, and orchards and vineyards. Also 
more research should be undertaken to ease the use of 
parameters where one crop model can be uploaded into 
databases and then downloaded, reformatted for use in 
another model. Addressing the above research issues will 
ultimately help address problem areas related to several 
climates and hydrological modelling issues discussed 
above, including parameter estimation, the temporal and 
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spatial scale of application, validation, climate-scenario 
generation, data, and modelling tools. Solutions to these 
problems would significantly improve models’ capability 
to assess the effects of climate change on water resources 
in southern Africa.
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